Mini-batch learning of exponential family finite mixture models
نویسندگان
چکیده
منابع مشابه
Restructuring exponential family mixture models
Variational KL (varKL) divergence minimization was previously applied to restructuring acoustic models (AMs) using Gaussian mixture models by reducing their size while preserving their accuracy. In this paper, we derive a related varKL for exponential family mixture models (EMMs) and test its accuracy using the weighted local maximum likelihood agglomerative clustering technique. Minimizing var...
متن کاملFinite mixture models for exponential repeated data
The analysis of finite mixture models for exponential repeated data is considered. The mixture components correspond to different possible states of the statistical units. Dependency and variability of repeated data are taken into account through random effects. For each component, an exponential mixed model is thus defined. When considering parameter estimation in this mixture of exponential m...
متن کاملUnsupervised Learning of Finite Mixture Models
ÐThis paper proposes an unsupervised algorithm for learning a finite mixture model from multivariate data. The adjective ªunsupervisedº is justified by two properties of the algorithm: 1) it is capable of selecting the number of components and 2) unlike the standard expectation-maximization (EM) algorithm, it does not require careful initialization. The proposed method also avoids another drawb...
متن کاملMAP for Exponential Family Dirichlet Process Mixture Models
The Dirichlet process mixture (DPM) is a ubiquitous, flexible Bayesian nonparametric model. However, full probabilistic inference in this model is analytically intractable, so that computationally intensive techniques such as Gibb’s sampling are required. As a result, DPM-based methods, which have considerable potential, are restricted to applications in which computational resources and time f...
متن کاملSpatial Mixture Models Based on Exponential Family Conditional Distributions
Spatial statistical models are applied in many problems for which dependence in observed random variables is not easily explained by a direct scientific mechanism. In such situations there may be a latent spatial process that acts to produce the observed spatial pattern. Scientific interest often centers on the latent process and the degree of spatial dependence that characterizes it. Such late...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics and Computing
سال: 2020
ISSN: 0960-3174,1573-1375
DOI: 10.1007/s11222-019-09919-4